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Abstract: Raman spectroscopy (RS) has shown great potential in noninvasive cancer 
screening. Statistically based algorithms, such as principal component analysis, are 
commonly employed to provide tissue classification; however, they are difficult to relate to 
the chemical and morphological basis of the spectroscopic features and underlying disease. 
As a result, we propose the first Raman biophysical model applied to in vivo skin cancer 
screening data. We expand upon previous models by utilizing in situ skin constituents as the 
building blocks, and validate the model using previous clinical screening data collected from 
a Raman optical fiber probe. We built an 830nm confocal Raman microscope integrated with 
a confocal laser-scanning microscope. Raman imaging was performed on skin sections 
spanning various disease states, and multivariate curve resolution (MCR) analysis was used to 
resolve the Raman spectra of individual in situ skin constituents. The basis spectra of the most 
relevant skin constituents were combined linearly to fit in vivo human skin spectra. Our 
results suggest collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin and water 
are the most important model components. We make available for download (see 
supplemental information) a database of Raman spectra for these eight components for others 
to use as a reference. Our model reveals the biochemical and structural makeup of normal, 
nonmelanoma and melanoma skin cancers, and precancers and paves the way for future 
development of this approach to noninvasive skin cancer diagnosis. 
© 2017 Optical Society of America 
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1. Introduction 

As the most common type of malignancy, skin cancer accounts for over 5.4 million cases and 
10K deaths per year in the US alone [1]. At present, the clinical diagnosis of skin cancer 
relies on visual inspection of suspicious lesions followed by biopsy and histopathology. The 
biopsies are performed in a dermatologist’s office and then sent to the histopathology lab for 
further examination. A few additional days may be needed to deliver the final results. These 
biopsy procedures are invasive, inefficient, and inconvenient. More importantly, the process 
has low diagnostic accuracy (49-81% among dermatologists for melanoma, the most deadly 
form [2]). The number of pigmented lesions needed to be excised to identify one melanoma 
ranges from 22 to 59 for experienced versus new general practitioners [3]. Large numbers of 
biopsies are performed on benign skin, leading to a substantial financial burden to the 
healthcare system and the patient, alone with considerable patient discomfort. As a result, a 
critical need exists to develop a noninvasive, accurate, fast, and inexpensive method for early 
skin cancer screening. 

Raman spectroscopy (RS) is a noninvasive optical technique sensitive to the molecular 
composition of biological tissues. Recent advances in near-infrared lasers, optical filters, fiber 
optics and CCD cameras have greatly improved its sensitivity in detecting the chemical 
composition of biological tissues. In the most recent decade, the Raman optical fiber probe 
has allowed for fast and accurate cancer diagnostics, including ex vivo study of breast [4, 5], 
prostate [6], lung [7] and skin [8, 9], and in vivo study of breast [10], cervical [11], and skin 
[2, 12]. Recent clinical studies from our group [12] and others [2] have demonstrated that RS 
has high diagnostic accuracy in discriminating skin melanoma from nonmelanoma pigmented 
lesions. 

To date, most fiber probe-based approaches have used statistical algorithms to describe 
the spectral differences of RS data, such as principal component analysis (PCA) [13] and 
independent component analysis (ICA) [14]. However, the principal or independent 
components are difficult to relate to the biophysical origin of disease, such as the 
microstructural organization of proteins and lipids and the functional state of cellular 
metabolism. These microstructural changes are what pathologists and dermatologists use to 
make diagnostic decisions and decide on the most appropriate treatment [10]. 

As a result, we describe for the first time a Raman “biophysical model” of human skin. 
This inverse model derives the morphological and biochemical composition of skin tissue 
from its Raman spectrum. The building blocks of our model are Raman active components 
extracted from skin in situ. Previous biophysical models used model components either 
measured directly from synthetic/purified chemicals [9, 15–18], or extracted from tissue 
sections in situ [19–21]. The advantage of using synthetic/purified chemicals as model 

                                                                              Vol. 8, No. 6 | 1 Jun 2017 | BIOMEDICAL OPTICS EXPRESS 2837 



components is that they can be easily measured without the need for Raman micro-imaging. 
This concept has been applied successfully to a previous Raman model of excisional skin 
biopsies [9] and has given us some prior knowledge about skin composition. Other groups 
used in situ constituents to build biophysical models of other disease processes, such as 
coronary atherosclerosis [19], breast cancer [20], and brain tumor [21]. Here, we expand upon 
this approach by developing a biophysical human skin model using in situ skin constituents. 
In situ constituents better represent the milieu of biological tissues that cannot be 
recapitulated in a synthetic environment. In human skin many constituents are present in 
various forms and each has a slightly different Raman spectrum. For instance, both collagen 
type I and III are abundant in human dermis; however, if both of them are included in the 
model, it may lead to overfitting and unstable results. In addition, skin constituents 
synthesized in the lab or from commercial sources are not in their natural states as in the 
human skin. For instance, the Raman features of a protein may change when it is exposed to 
organic solvents during synthesis. As a result, a single spectrum of skin constituent extracted 
from its microenvironment can provide a more general picture of the biophysical origins of 
skin spanning normal and abnormal disease states. 

Furthermore, we applied the model for the first time to in vivo human skin cancer 
screening data that covers a wide range of normal, nonmelanoma and melanoma skin cancers 
and precancers [12]. Previous Raman models of human skin were either built for ex vivo 
tissue specimens [9] or in vivo normal skin [22]; however, Raman biophysical models have 
not been applied to in vivo skin cancer screening to interpret biophysical changes between 
pathologies. 

In this study, we performed Raman imaging of tissue sections using a custom confocal 
Raman microscope. Multivariate curve resolution (MCR) analysis [23] was used to resolve in 
situ skin constituents from Raman images. Our results suggest that eight skin constituents are 
the most relevant building blocks, illustrating some variances with their corresponding 
synthetic components. The basis spectra of those skin constituents were then combined 
linearly to describe in vivo human skin spectra. The fit coefficients provided insight into the 
biochemical and structural composition of normal, benign and malignant skin tissues. Our 
model revealed the most important skin constituents representing the spectral features of skin 
tissues, and provided significant guidance to develop diagnostic algorithms for real-time 
noninvasive skin cancer diagnosis in future. 

2. Materials and methods 

2.1 Raman instrumentation 

Raman images were collected with a custom built confocal Raman microscope illustrated in 
Fig. 1. The system was also integrated with a confocal laser-scanning microscope (CLSM) 
and a bright-field microscope, which provided the morphology image for assisting in locating 
the region of interest for Raman micro-imaging. The Raman excitation source was an 830nm 
single mode diode laser (LM830-PLR200, Ondax). The laser beam was reshaped, expanded 
and delivered to the sample through a microscope objective (Olympus, NA = 1.2, 60x). The 
galvanometer mirror performed 2D raster scanning on the tissue. The backscattered Raman 
signal was collected by a spectrograph (f/1.8i, Kaiser) and a deep cooling CCD camera 
(IDUS, Andor) through an optical fiber (50 μm, NA = 0.22), which also acted as a pinhole. 
The Rayleigh scattering light was collected by a PMT (C10709, Hamamatsu), and amplified 
by a current preamplifier (SR570, Stanford Research Systems). A data acquisition board 
(PCIe-6351, National Instruments) and LabVIEW software (National Instruments) were used 
to control the system. The power delivered to the sample was approximately 45mW. Lateral 
resolution was measured from the FWHM (full width at half maximum) of the point spread 
function using 0.2 and 0.5 μm microbeads. Axial resolution was measured from the FWHM 
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of the intensity profile by translating a mirror towards the objective. The lateral, axial and 
spectral resolution of the system was around 1 μm, 8 μm and 8 cm−1, respectively. 

 

Fig. 1. Schematic of confocal Raman and confocal laser-scanning microscope used for skin 
measurements. The flip mirror and CMOS camera were used for bright-field imaging. ISO, 
isolator; D1, D2: dichroic mirror; P1 – P3: pinhole; L1 – L6, lens; GM, galvanometer mirror; 
FM, flip mirror. 

2.2 Tissue preparation and Raman micro-imaging 

Our study was approved by the Institutional Review Board at The University of Texas at 
Austin and Seton Medical Center. Fresh frozen human skin tissue samples were acquired 
from biopsy specimens during routine skin cancer surgery at Austin Dermatologic Surgery 
Center. After being transferred to the lab, the samples were stored at −80C. They were then 
thawed to −22C in a cryostat and sliced into 10 μm thin sections. The sections were 
transferred to magnesium fluoride slides (Edmund Optics) for the Raman measurement, and 
serial sections were transferred on standard microscope slides for hematoxylin and eosin 
(H&E) staining. Prior to Raman imaging, the sections were warmed to room temperature and 
kept moisturized with 0.9% saline solution. 

Next, we performed Raman imaging on skin sections. Typical integration time at each 
pixel location was 2s. Typical step size in both the x and y directions was 1μm, but sometimes 
to achieve a large of view a step size of 5 μm was used. Imaging area varied from 30 × 30 
μm2 to 150 × 150 μm2. We then correlated the Raman image with the histopathology image of 
the serial stained section. A board certified dermatologist assisted in identifying and 
confirming the morphology and biochemical components measured. In total, we collected 
more than 40 Raman images from samples of different disease states, including 24 images 
from 11 basal cell carcinoma (BCC) patients, 15 images from 5 squamous cell carcinoma 
(SCC) patients and 4 images from 1 malignant melanoma (MM) patient. 

2.3 Data preprocessing and MCR analysis 

Raman data preprocessing was performed using MATLAB (R2015b, MathWorks). All 
spectra underwent wavelength calibration, background subtraction, cosmic ray removal and 
smoothing. The system spectral response was calibrated using a tungsten halogen lamp (LS-
1-CAL, Ocean Optics). The fluorescence background was then removed by modifying a 5th 
order polynomial fitting routine [24]. The effective spectral range was 800 to 1800 cm−1. 

A multivariate curve resolution (MCR) method was employed to resolve individual 
morphological or biochemical components from the Raman image. This method has been 
successfully applied to stimulated Raman imaging data by Zhang et al. [25]. The basic 
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concept of MCR is to decompose the raw spectra matrix D  (unfolded from Raman imaging) 
into the product of two smaller matrices C and TS by a bilinear model: 

 TD C S E= ⋅ +  (1) 
TS  corresponds to the matrix of the pure spectra, C  is the related concentration profiles 

for each of the components and E  is the error matrix. As an unsupervised learning method, 
the number of components contributing to D  was determined either by prior knowledge or 
by assessing the results obtained using singular value decomposition (SVD). After initial 
estimation is given for TS , the C and TS are optimized iteratively using an alternative least-
squares algorithm (ALS) until convergence is reached. 

Here, we used a MATLAB based MCR-ALS toolbox [23] to determine C and TS . The 

initial estimates of C and TS were determined by means of a purest variable detection method 
[26]. The basic idea is to resolve highly overlapping near-infrared spectra with baseline 
problems by using the second-derivative spectra [26]. A nonnegative constraint and a 10% of 
tolerance were added to the ALS optimization. The concentration images for each individual 
component were reconstructed from C , and the corresponding basis spectra were obtained 

from TS . We then categorized the basis spectra according to their biochemical or structural 
origin, such as elastic fibers, collagen fibers and cell nucleus. 

We obtained a library of basis spectra from various skin sections spanning normal skin, 
and various skin disease states. The spectra in the same category were then averaged to create 
a single basis spectrum to represent that biochemical or structure. Although the basis spectra 
collected from different patients had minor differences, after averaging spectra from many 
patients we could ensure that the inter-patient variation was minimized. 

2.4 Clinical screening data description 

In vivo human skin spectra came from our previous skin cancer screening study [12]. Data 
were collected from an optical fiber probe [27] integrated in a multimodal spectroscopy 
system [28] on different sites, such as scalp, nose, earlobe, shoulder and thigh. Lesion types 
including basal cell carcinoma (BCC, 19 lesions), squamous cell carcinoma (SCC, 38 
lesions), actinic keratosis (AK, 14 lesions), benign pigmented lesion (PL, 17 lesions) and 
malignant melanoma (MM, 12 lesions). BCC and SCC are the most common types of 
nonmelanoma skin cancers, whereas AK and PL are the most common precancers of SCC 
and MM, respectively. Raman spectra of adjacent normal skin for each individual lesion were 
also collected. Although normal skin measurements were not verified by histopathology, they 
were visually verified to be normal by an experienced dermatologist/physician assistant. 

2.5 Model establishment 

A sample’s Raman spectrum can be represented as a linear combination of the Raman spectra 
of the sample’s individual constituents. The signal intensity is then proportional to the 
chemical concentration [29]. Therefore, if one knows the spectra of the basis tissue 
constituents a priori, one can determine the concentration of those basis constituents. We 
used linear least-squares fitting with a nonnegative restraint for model fitting, according to the 
following equation: 

 X c s e= ⋅ +  (2) 
while X  is the sample’s spectrum (in vivo human skin spectrum). s  is the spectra matrix of 
the sample’s individual constituents. c  is the relative spectral contribution (fit parameter) 
predicted by the model. e is the noise related with the clinical RS system. Next, a 
combination of forward selection and backward elimination methods was performed to derive 
the most relevant basis constituents to the spectroscopic model. Finally, after applying the 
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model to all the in vivo human skin data, we could obtain the biochemical and structural 
makeup of tissues spanning normal and various disease states. 

One important factor that may influence the performance of the model is collinearity of 
the basis spectra. Collinearity is a common issue in linear regression that may lead to an 
unstable result [30]. The following equation is to calculate the collinearity coefficients 
between two basis spectra, x and y : 

 ( )( )
T

T T

x y
R

x x y y
=  (3) 

A value of 0 means the two basis spectra x and y do not have collinearity, and 1 indicates 
the two vectors are the same. This equation was used for the initial evaluation of the model 
components. 

3. Results 

3.1 Extraction of primary skin constituents in situ 

The basis spectra were categorized into: (1) cellular components, (2) epidermal extracellular 
matrix (ECM), (3) dermal ECM, (4) lipids, (5) pigments, and (6) miscellaneous. We will 
illustrate each category in the following part of this section. 

3.1.1 Cellular components 

To identify cellular tumor components, Raman micro-imaging was performed within a tumor 
cluster in a BCC section (Fig. 2). Using MCR analysis, we reconstructed three concentration 
images (Fig. 2a-c) corresponding to cell nucleus, cell cytoplasm, and the Raman substrate. 
Those structures correlated well with the bright field, CLSM, and histopathology images (Fig. 
2d-f), and their Raman spectra had similar characteristic peaks with the known spectra 
measured from the pure chemicals (Fig. 2). This approach was used to resolve the other skin 
constituents in the following sections as well. As seen from the plots on the right, the basis 
spectra of in situ nucleus and synthetic DNA (Sigma-Aldrich) are similar, which both have 
the pronounced contribution from phosphodioxy group PO2

−1 at 1093 cm−1. However, the 
difference spectrum shows that in situ nucleus has substantial differences from synthetic 
DNA. For example, in situ nucleus appears to have a higher contribution from DNA 
backbone at 835 cm−1 [31]. The spectra of in situ cytoplasm and synthetic actin also have high 
similarity, but major differences can be found at 1003 cm−1 phenylalanine peak, 1081 and 
1092 cm−1 lipid band. Numerous other peaks can also be appreciated in the difference spectra. 
These differences indicate the morphologically derived basis spectra of nucleus and 
cytoplasm include features related to other elements found in the cell. 
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Fig. 2. Extracting cellular components from a BCC lesion. Raman images of nucleus (a) and 
cytoplasm (b) and Raman substrate (c) are compared with bright-field image (d), CLSM image 
(e) and histopathology image (f). The boxes on (e) and (f) mark the location of Raman 
imaging. The contrast of the CLSM image was provided by the relative difference in refractive 
index of cells and the surrounding stroma. Plots on the right show Raman spectra of in situ 
nucleus, synthetic DNA and their difference spectrum. Also in situ cytoplasm, synthetic actin 
and their difference spectrum. Scale bar: 10 μm. 

3.1.2 Epidermal ECM 

The epidermal layer of skin provides the barrier to water permeation and abrasion resistance. 
It is produced by continuous cell division of keratinocytes in the basal layer. Ultimately, the 
keratinocytes cornify and produce the stratum corneum, which is the dead, flattened cells at 
the outermost layer of the skin [32]. Because keratin is the main chemical component of 
epidermal ECM, we use in situ keratin to represent epidermal ECM. 

Figure 3 illustrates Raman imaging performed on epidermis from a normal skin section. 
Tissue architecture correlates well with the histopathology image. The concentration images 
of epidermal ECM and the Raman substrate were reconstructed using MCR analysis. The 
Raman spectra of in situ and synthetic keratin are similar with substantial differences found at 
the protein bands at 855, 1318 and 1409 cm−1 [33]. 

 

Fig. 3. Extracting the epidermal component from a normal skin section. Raman images of in 
situ keratin (a) and Raman substrate (b) are compared with bright-field image (c) and 
histopathology image (d). Plots on the right show Raman spectra of in situ, synthetic keratin 
and their difference spectrum. Scale bar:10 μm. 

                                                                              Vol. 8, No. 6 | 1 Jun 2017 | BIOMEDICAL OPTICS EXPRESS 2842 



3.1.3 Dermal ECM 

Dermal ECM comprises fibrillar collagens and associated proteins. Collagen fibers account 
for about 70% of the weight of dry dermis, while elastin maintains skin elasticity through a 
durable cross-linked array. Large diameter elastin-rich elastic fibers reside in the reticular 
dermis [34]. 

Figure 4 illustrates Raman imaging performed on a BCC skin section to extract dermal 
ECM proteins. The in situ collagen (collagen fiber), in situ elastin (elastic fiber), dye, and 
Raman substrate were resolved from the image by MCR analysis. The thin blue-gray elastic 
fibers and the pink collagen fibers can be identified from the histopathology image. The plots 
on the right compares the Raman spectrum of in situ collagen with synthetic type I and III 
collagen. Major differences are found at 856, 1248 and 1665 cm−1 protein bands between in 
situ and type I collagen, and 1157 and 1514 cm−1 between in situ and type III collagen. In situ 
and synthetic elastin have very similar spectra, which indicates that elastin is the major 
chemical component of elastic fibers. 

 

Fig. 4. Extracting dermal components from a BCC skin section. In situ collagen (a) and elastin 
(b) are resolved from the image. The dye used by the dermatologist to mark the orientation of 
the tissue was also detected (c). Raman images are compared with the bright-field image (d), 
CLSM image (e) and histopathology image (f). The box on (e) marks the location of Raman 
imaging. The arrow in (f) points to a thin blue-gray elastic fiber. Plots on the right displays 
Raman spectrum of in situ collagen, synthetic collagen and the difference spectrum. Also 
Raman spectrum of in situ elastin, synthetic elastin, and their difference spectrum. Scale bar: 
10 μm. 

3.1.4 Lipids 

Skin’s epidermal surface is comprised of sebaceous and stratum corneum lipids. Epidermal 
lipids act like a cement to fill the spaces between the cells. The major constituents of 
sebaceous lipids are triglycerides (triolein), wax esters and squalene, while the epidermal 
lipids are a mixture of ceramides, free fatty acids and cholesterol [35, 36]. Ceramide is an 
important epidermal surface lipid as it composes almost half of the SC lipids [32]. 

Raman imaging was also performed to derive the basis spectra of lipids. Figure 5 
illustrates extracting in situ ceramide and triolein within a hair follicle from a SCC skin 
section. The synthetic spectra are not shown because they look similar to in situ spectra. 
Instead, we compare the difference spectra between in situ lipids. Although in situ ceramide 
and palmitic acid look similar, they have different spectral intensity in C-C stretching mode at 
1063 and 1128 cm−1, CH2 twisting mode at 1296 cm−1, CH2 bending mode at 1440 cm−1 and 
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C = C stretching mode at 1656 cm−1. Larger variance was observed in those bands between in 
situ ceramide and triolein. Triolein is not only abundant in skin lipid, but also in subcutaneous 
fat [20]. As triolein has a very strong Raman scattering cross-section, it contributes greatly to 
Raman spectrum of human skin. 

 

Fig. 5. Extracting lipids within a hair follicle from a SCC skin section. In situ ceramide (a), 
triolein (b) and Raman substrate (c) are resolved from the image. Raman images are compared 
with the bright-field image (d), CLSM image (e) and histopathology image (f). Some lipids in 
(f) were lost during the staining processing. The box on (e) and (f) marks the location of 
Raman imaging. Difference spectrum between in situ ceramide and palmitic acid and 
difference spectrum between in situ ceramide and triolein are also shown. Scale bar: 10 μm. 

3.1.5 Pigments 

Skin pigments include melanin and beta carotene. Melanin is produced by melanocytes in the 
basal layer of the epidermis. In Fig. 6, we identified melanin from a MM skin section. As 
expected, melanin provides strong contrast in CLSM image [37]. We lowered the laser 
excitation to 20mW to reduce tissue burning caused by strong absorption of melanin. As this 
led to a worsening in the SNR, we further smoothed the melanin spectrum by fitting it to 
Gaussian functions [38]. The two broad peaks located at 1378 cm−1 and 1573 cm−1 were 
consistent with the spectrum of in vivo cutaneous melanin [38]. Beta carotene is a plant-
derived carotenoid. It was extracted from skin sections adjacent to fatty tissue. The 
characteristic peaks of beta carotene at 1008, 1156 and 1515 cm−1 are consistent with a 
previous study [39]. 
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Fig. 6. Extracting melanin from a MM skin section. Raman image of melanin (d) are compared 
with bright field image (a) CLSM image (b) and histopathology image (c). Basis spectra of 
melanin and beta carotene are shown on the right. Scale bar: 50 μm. 

3.1.6 Miscellaneous 

In Raman imaging, water came from the saline used to keep the skin section moist. We found 
water plays an important role in fitting the broad Raman band at 1645 cm−1. Hemoglobin and 
calcium hydroxyapatite (CaH) were only detected in one skin section but were included in our 
library. Morphologies such as hair follicle (HF) and keratin pearl (KP) were also obtained. KP 
was extracted from SCC lesions with acceleration of keratinization. Figure 7 shows the basis 
spectra of these constituents. Although the spectra of HF and KP are similar, the difference 
spectrum suggested that the former contained cellular information (DNA backbone at 835 
cm−1 and phosphodioxy group PO2

−1 at 1093 cm−1). Finally, we included a spectrum of fiber 
background generated from the Raman optical fiber probe. This component is used to fit the 
broad peak between 1000 – 1100 cm−1 in the in vivo data. 

 

Fig. 7. Basis Raman spectra of water, calcium hydroxyapatite (CaH), hemoglobin (Hb), hair 
follicle (HF) and keratin pearl (KP) collected in situ are displayed. The difference spectrum 
between HF and KP is also shown. 

3.2 Biophysical modeling results 

A total of fifteen candidate model components were derived. The basis spectra were peak 
normalized with a minimum value of 0 and maximum value of 1. Their collinearity 
coefficients are displayed in Table 1. Beta carotene and calcium hydroxyapatite are not shown 
because they have low collinearity (< 0.50) with other components. Several components have 
high collinearity, such as in situ keratin in epidermis, keratin pearl (KP), and hair follicle 
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(HF), likely because keratin dominates their chemical composition. As a result, we selected 
only one model component to represent keratin. In addition, we observed high collinearity 
between cell cytoplasm (Cyt) and other protein-rich components (elastin (Ela), keratin, KP, 
and HF). These components share common features of many functional groups, such as C-C 
stretching around 939 cm−1, Amide III around 1270 cm−1, CH modes around 1454 cm−1 and 
amide I around 1660 cm−1. Considering that (1) cell cytoplasm has a much smaller Raman 
scattering cross-section and less quantity than keratin, and (2) the spectrum of keratin may 
contain some cell features due to their close proximity, we finally excluded cytoplasm from 
our model. In addition, Raman spectrum of palmitic acid (PA) has a high degree of overlap 
with triolein (0.94) and ceramide (0.96), so PA was also excluded from the model. In total, 
we arrive at eight primary Raman active components: collagen, elastin, triolein, cell nucleus, 
keratin, ceramide, melanin and water (Fig. 8). The peak positions of main Raman bands are 
displayed in Table 2. 

Table 1. Collinearity measurement for candidate model componentsa 

  Col Ela Ker KP HF Cyt Nuc Trio Cer PA Mel Hb Water 

(a) 

Col 1.00             

Ela 0.89 1.00            

Ker 0.88 0.93 1.00           

KP 0.86 0.94 0.97 1.00          

HF 0.77 0.90 0.94 0.95 1.00         

(b) 
Cyt 0.86 0.93 0.95 0.97 0.95 1.00        

Nuc 0.64 0.76 0.70 0.75 0.78 0.77 1.00       

(c) 

Trio 0.70 0.78 0.82 0.82 0.84 0.86 0.59 1.00      

Cer 0.56 0.62 0.66 0.66 0.70 0.72 0.44 0.85 1.00     

PA 0.65 0.75 0.79 0.79 0.82 0.83 0.51 0.94 0.96 1.00    

(d) Mel 0.47 0.58 0.56 0.61 0.56 0.57 0.48 0.39 0.33 0.42 1.00   

(e) 
Hb 0.64 0.73 0.68 0.72 0.67 0.69 0.61 0.41 0.34 0.44 0.78 1.00  

Water 0.56 0.58 0.58 0.65 0.57 0.62 0.48 0.33 0.20 0.29 0.55 0.60 1.00 
aComponents are sorted according to their major composition: (a) protein, (b) cell, (c) lipid, (d) pigment, (e) 
miscellaneous. Components include collagen (Col), elastin (Ela), keratin (Ker), keratin peal (KP), hair follicle 
(HF), cell cytoplasm (Cyt), cell nucleus (Nuc), triolein (Trio), ceramide (Cer), palmitic acid (PA), melanin 
(Mel), hemoglobin (Hb) and water. 

 

Fig. 8. Basis spectra used in the biophysical model of skin. Model components include 
collagen (a), elastin (b), triolein (c), nucleus (d), keratin (e), ceramide (f), melanin (g), water 
(h). See Data File 1 for underlying values. 
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In an effort to validate that these eight components captured the primary skin constituents 
as measured on in vivo human skin cancers, we fit this linear component model to the clinical 
data set. We determined the relative contribution from the eight model components of each of 
the pathology groups. Figure 9 shows the fitting result of the mean Raman spectra. 
Considering the order of magnitude of the residuals with respect to the bulk tissue spectra, 
most of the spectroscopic features are well represented. The fit coefficients across each model 
component are normalized to sum to 1. 

The results illustrate key biophysical changes of skin with different tissue types. For 
instance, normal skin has an average of 41% triolein, 30% of dermal ECM (collagen and 
elastin), and minor contribution from nucleus, ceramide, melanin and water. However, the 
contribution of triolein drops significantly from normal skin (41%) to nonmelanoma skin 
cancer/precancer (BCC, SCC, AK) (28%, 32%, 32%) and to MM, PL (11%, 23%). As 
expected, melanin content is much higher in MM (29%) and PL (19%) compared to other 
tissue types (3 – 7%). In addition, keratin concentration is higher in SCC (11%) as compared 
to other tissue types (1 – 3%). 

Table 2. Peak positions of main Raman bands in the Raman active components (Refs. 2, 
9, 19, 31, 33, 38) 

Raman peaks  

[cm-1] 
Band assignments  Components 

835 DNA backbone: O-P-O/ tyrosine nucleus 

855 CCH bending (aromatic) of protein elastin, keratin 

856 C-C vibration of the collagen backbone collagen 

937 C-C stretching of proline and valine and protein backbone keratin 

940 C-C stretching of protein backbone collagen, elastin 

1003 C-C vibration of phenyl ring collagen, elastin, keratin 

1063 C-C asymmetric skeletal stretching of lipids (trans-conformation);  ceramide 

1080 C-C skeletal stretching triolein 

1093 O-P-O symmetric stretching vibration of the DNA backbone nucleus 

1128 C-C symmetric skeletal stretching ceramide 

1248 Amide III (β-sheet and random coil conformations) collagen, elastin 

1254 β sheet/ thymine/ cytosine (DNA base/ DNA & RNA base) nucleus 

1269 
Amide III (α-helix conformation), C-N stretching, N-H in-plane 

bending 
collagen, elastin, keratin 

1301 C-H modes (CH2 twisting and wagging) of lipids; CH2/CH3 bands triolein 

1336 desmosine/isodesmosine  elastin 

1337 adenine, guanine (DNA & RNA base) nucleus 

1378 linear stretching of the C-C bonds within the rings melanin 

1440 CH2/CH3 bands triolein, ceramide 

1450 C-H bending of proteins keratin 

1454 C-H stretching, C-H asymmetric deformation collagen, elastin 

1573 in-plane stretching of the aromatic rings melanin 

1645 O-H bending mode of liquid water water 

1653 C-O stretching model of amide I keratin 

1656 C-C lipids triolein 

1665 C-O amide I vibration collagen, elastin 
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Fig. 9. Model fitting results for in vivo human skin spectra categorized as Normal, BCC, SCC, 
AK, PL and MM. Mean Raman tissue spectra (solid lines), model fits (dotted lines), residuals 
are plotted on the same scale. Fit coefficients in percentage are listed on the right. The arrow 
indicates the most characteristic changes for each lesion type. 

4. Discussion 

In this study, we establish a Raman “biophysical model”, an inverse model for determining 
biophysical skin components using in vivo Raman spectroscopy. We built a confocal Raman 
microscope to identify eight of the most relevant skin constituents contributing to the spectral 
differences among different skin malignancies. 

Our model components were found to be consistent with previous studies. Some were 
commonly used in skin and non-skin models. For instance, collagen and triolein are known to 
be important contributors to the RS signal of breast, gastric, and artery tissues [17, 19, 20]. 
We demonstrated these two components also played an important role for fitting in vivo skin 
data. Other components were more specific to skin. For instance, Caspers et al. used ceramide 
to model epidermal lipid in human stratum corneum layer [40]. Silveira et al. included elastin 
to model skin dermal protein [9]. Keratin was important for in vivo skin to consider the 
impact of epidermis [22, 40] but not necessary for excisional skin fragments because the 
measurement was on the dermis side [9]. Melanin was important only when pigmented 
lesions were considered, so it was used to model melanoma skin tissue [9]. 

However, our model is different from previous biophysical Raman skin models in the 
following two aspects. First, we used skin constituents in their microenvironment as the basis 
spectra. Our results showed that it was possible to use a single morphologically derived basis 
spectrum rather than synthetic/purified chemicals. As demonstrated in the Results section, in 
situ skin constituents had substantial differences from their corresponding synthetic 
chemicals, even if their major chemical components were the same. Since in situ constituents 
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are extracted from skin in their natural state, without any further processing, they can better 
represent the skin microenvironment that cannot be recapitulated in a synthetic environment. 
Second, our model was validated by a previous in vivo clinical screening study [12] acquired 
by a Raman optical fiber probe [27]. Currently, the only biophysical Raman skin cancer 
model was based on excised fragments of BCC and melanoma skin tissues [9]. We expanded 
upon this research to apply our model to in vivo skin spectra study and covered a wider range 
of nonmelanoma and melanoma skin cancers and precancers. 

While we found a total of 15 measurable Raman components in skin, we found the most 
consistent model outcomes were achieved when minimizing this number to only eight 
components. Our approach was to select only one Raman constituent to represent those in situ 
components that were chemically similar and with high collinearity. Similarly, Stone et al. 
demonstrated that including both amino acids and the proteins containing them in a linear 
model skewed the fit coefficients [16]. Our experience is that minimizing the number of 
protein components resulted in the most consistent fit coefficients. 

The biophysical changes of skin derived by our model follow known morphological and 
biochemical changes in skin malignancy. We observed that there is less triolein in skin 
cancer/pre-cancer lesions relative to the amount of triolein in normal skin. Triolein is a major 
form of triglyceride in human skin, which presents as subcutaneous fat and epidermal surface 
lipid. The apparent decrease in triolein as cancer progresses could be due to: (1) the reduction 
of subcutaneous fat sampled by the probe, caused by the thickening epidermis during lesion 
formation; and/or (2) the reduction of membrane lipid synthesis induced by UV damage [34]. 
Because subcutaneous fat exists in a substantial amount and has large Raman scattering cross 
section [41] we believe (1) is the major reason. The thickening of epidermis originates from 
the progression of malignancy [42]. 

While both melanoma and nonmelanoma skin cancers were included in this study, the 
direct comparison between BCC or SCC and MM is much less clinically relevant [43]. Thus, 
we compared nonmelanoma (BCC, SCC, AK) versus normal skin and MM versus PL 
separately. We observed that the amount of collagen was substantially lower in nonmelanoma 
skin cancer lesions as compared to normal skin. This could be explained by the breakdown of 
collagen in dermis due to the role metalloproteinases (MMP) play in degrading collagen and 
prohibiting procollagen biosynthesis [35]. The thickening of the epidermis also leads to 
reduced collagen signal collected by the probe. Furthermore, we observed the amount of 
elastin was higher in BCC lesions as compared to normal skin, potentially resulting from the 
existence of solar elastosis. Elastosis is characterized by the accumulation of disorganized 
elastic fibers in the dermis and commonly found in photoaging skin [36]. Finally, we found 
keratin was substantially higher in SCC compared to the other groups, which suggests 
massive keratinization disorders during SCC tumor progression [37]. 

By visual inspection, the mean spectra of MM and PL appear very different than the mean 
spectra of other pathologies. The spectral flattening between 1500 and 1700 cm−1 is caused by 
increased melanin and pigmentation, indicating RS is sensitive to pigment-related variations. 
However, discriminating MM from PL remains the most challenging discrimination in skin 
cancer screening, resulting in high negative biopsy ratios clinically. In our study, we observed 
melanin content in MM is substantially higher as compared to PL, indicating massive 
melanocyte proliferation. The significantly lower level of triolein in MM than PL could be 
explained by both the reasons given above and by the strong absorption of melanin, which 
further reduced the signal sampled from subcutaneous fat. In addition, collagen is 
substantially lower in MM than PL. This suggests that tumor formation is closely related to 
the changes in its stroma microenvironment in favor of its proliferation and eventual 
metastasis [37, 38]. Our model demonstrated that collagen, triolein, and melanin are the most 
important cancer identifiers for MM. Future work will explore the diagnostic potential of 
these biophysical parameters in discriminating skin cancers. 
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We observed a higher fitting residual in MM than the other tissue types. The basic 
assumption of our linear fitting model is that the scattering properties of tissue do not 
significantly distort the Raman spectrum [29], but this assumption may not hold for melanin 
due to its strong absorption and scattering. Intrinsic Raman spectroscopy may help correct 
this distortion by relating the observed and intrinsic Raman spectra through diffuse 
reflectance using light transport model [44]. We will also explore nonlinear fitting models to 
improve the fitting, such as partial least-squares (PLS) and support vector machine (SVM). 
Other factors also contribute to the residuals in general. One factor is that the basis spectra 
and bulk tissue spectra were acquired from two independent Raman systems, which were 
composed of different detectors, lenses, beam splitters, etc. Spectral response calibration was 
used to match the spectral response of the two systems, but it could not completely eliminate 
the differences in the spectra measured by the two systems. Another factor is the signal 
generated by probe components, such as the fiber background, epoxy and sapphire [27]. 

In general, we did not find site-specific constituents that are not covered by the current 
model, but the concentration of the 8 components may vary due to location. For example, 
when the measurement was taken on the scalp surround with dark hairs we would detect 
melanin signal. Future work will examine how sensitive our model is in picking up such 
information. 

In this study, we proposed the first Raman biophysical model that used in situ Raman 
active components as the building blocks, and applied to in vivo skin cancer screening data. 
Our results indicate that eight basis spectra derived from collagen, elastin, triolein, cell 
nucleus, keratin, ceramide, melanin, and water are the most relevant to describe the spectral 
features of human skin RS data. We make available for download (see Data File 1) a database 
of Raman spectra for these eight components for others to use as a reference. Our future work 
will evaluate the performance of this model in discriminating skin cancer pathologies within 
the context of ongoing clinical studies of Raman spectroscopy for skin cancer screening in 
our group. We environ our model being used with the Raman probe for analyzing individual 
lesions pointed out by patents or providers. We think it would be reasonable to scan the top 
ten concerning lesions on any patients without affecting the current patient flow in a 
physician’s office. 
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